Vessel imaging by interferometric phase-contrast X-ray technique.
نویسندگان
چکیده
BACKGROUND Phase-contrast x-ray imaging using an x-ray interferometer has great potential to reveal the structures inside soft tissues, because the sensitivity of this method to hydrogen, carbon, nitrogen, and oxygen is approximately 1000 times higher than that of the absorption-contrast x-ray method. Imaging of vessels is very important to understand the vascular distribution of organs and tumors, so the possibility of selective angiography based on phase contrast is examined with a physiological material composed of low-atomic-number elements. METHODS AND RESULTS Phase-contrast x-ray imaging was performed with a synchrotron x-ray source. Differences in refractive index, ddelta, of physiological saline, lactated Ringer's solution, 5% glucose, artificial blood such as pyridoxylated hemoglobin-polyoxyethylene conjugate, and perfluorotributylamine were measured. Because the ddelta of physiological saline has highest contrast, it was used for the phase-contrast x-ray imaging of vessel, and this was compared with absorption-contrast x-ray images. Vessels >0.03 mm in diameter of excised liver from rats and a rabbit were revealed clearly in phase-contrast x-ray imaging, whereas the vessel could not be revealed at all by the absorption-contrast x-ray image. Absorption-contrast x-ray images with iodine microspheres depicted only portal veins >0.1 mm in diameter with nearly the same x-ray dose as the present phase-contrast x-ray imaging. CONCLUSIONS Phase-contrast x-ray imaging explored clear depiction of the vessels using physiological saline with small doses of x-rays.
منابع مشابه
Hard x-ray quantitative non-interferometric phase-contrast microscopy
We report the results of quantitative phase-contrast imaging experiments using synchrotron radiation, in-line imaging geometry and a non-interferometric phase retrieval technique. This quantitative imaging method is fast, simple, robust, does not require sophisticated x-ray optical elements and can potentially provide submicron spatial resolution over a field of view of the order of centimetres...
متن کاملComparison of phase contrast X-ray computed tomography methods for non-destructive testing of materials
Currently the basis for standard X-ray computed tomography (CT) is absorption. A volumetric map of a specimen in three dimensions is generated from a set of absorption radiographs. The contrast of details strongly depends on a difference in absorption coefficient between the detail and the environment. However, when the absorption difference is low, sufficient contrast for a good quality X-ray ...
متن کاملPhase and absorption retrieval using incoherent X-ray sources.
X-ray phase contrast imaging has overcome the limitations of X-ray absorption imaging in many fields. Particular effort has been directed towards developing phase retrieval methods: These reveal quantitative information about a sample, which is a requirement for performing X-ray phase tomography, allows material identification and better distinction between tissue types, etc. Phase retrieval se...
متن کاملSynthesis and characterization of Gd2O2 S: Tb3+ phosphor powder for X-ray imaging detectors
Gadolinium oxysulfide phosphor doped with trivalent terbium have been synthesized using urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere. Structural and morphological of synthesized phosphor powder were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Hexagonal structure ...
متن کاملPhase-sensitive imaging and phase tomography using X-ray interferometers.
X-ray interferometry for imaging applications is discussed with a review of X-ray interferometric imaging activities reported to date. Phase measurement and phase tomography based on X-ray interferometry are also presented. Finally the advantage of X-ray interferometric imaging in comparison with other phase-sensitive X-ray imaging methods is discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 105 14 شماره
صفحات -
تاریخ انتشار 2002